Như chúng ta đã biết, các công nghệ xử lý nước thải hiện nay gồm:
- Một là: Công nghệ xử lý nước thải MBBR.
- Hai là: Công nghệ xử lý AAO (Thường được gọi là công nghệ A2O)
- Ba là: Công nghệ xử lý nước thải hóa lý kết hợp với sinh học.
- Bốn là: Công nghệ xử lý màng lọc sinh học MBR.
- Năm là: Công nghệ xử lý nước thải SBR
Chúng ta cùng tìm hiểu công nghệ xử lý nước thải bằng công nghệ MBBR:
A. Nguyên tắc hoạt động:
MBBR là từ viết tắt của cụm Moving Bed Biofilm Reactor, trong đó sử dụng các giá thể cho vi sinh dính bám để sinh trưởng và phát triển.
Nhưng vì sao công nghệ MBBR là công nghệ được các chuyên gia đánh giá cao như vậy? Bởi vì vật liệu làm giá thể có tỷ trọng nhẹ hơn nước đảm bảo điều kiện lơ lửng. Các giá thể này luôn chuyển động không ngừng trong toàn thể tích bể nhờ các thiết bị thổi khí và cánh khuấy qua đó thì mật độ vi sinh ngày càng gia tăng, hiệu quả xử lý ngày càng cao.
Trong bể hiếu khí dính bám MBBR, hệ thống cấp khí được cung cấp để tạo điều kiện cho vi sinh vật hiếu khí sinh trưởng và phát triển. Đồng thời quá trình cấp khí phải đảm bảo được các vật liệu luôn ở trạng thái lơ lửng và chuyển động xáo trộn liên tục trong suốt quá trình phản ứng. Vi sinh vật có khả năng phân giải các hợp chất hữu cơ sẽ dính bám và phát triển trên bề mặt các vật liệu. Các vi sinh vật hiếu khí sẽ chuyển hóa các chất hữu cơ trong nước thải để phát triển thành sinh khối. Quần xã vi sinh sẽ phát triển và dày lên rất nhanh chóng cùng với sự suy giảm các chất hữu cơ trong nước thải. Khi đạt đến một độ dày nhất định, khối lượng vi sinh vật sẽ tăng lên, lớp vi sinh vật phía trong do không tiếp xúc được nguồn thức ăn nên chúng sẽ bị chết, khả năng bám vào vật liệu không còn. Khi chúng không bám được lên bề mặt vật liệu sẽ bị bong ra rơi vào trong nước thải. Một lượng nhỏ vi sinh vật còn bám trên các vật liệu sẽ tiếp tục sử dụng các hợp chất hữu cơ có trong nước thải để hình thành một quần xã sinh vật mới.
Ngoài nhiệm vụ xử lý các hợp chất hữu cơ trong nước thải, thì trong bể sinh học hiếu khí dính bám lơ lửng còn xảy ra quá trình Trinitrate hóa và Denitrate, giúp loại bỏ các hợp chất nito, photpho trong nước thải, do đó không cần sử dụng bể Anoxic. Vi sinh vật bám trên bề mặt vật liệu lọc gồm 3 loại: lớp ngoài cùng là vi sinh vật hiếu khí, tiếp là lớp vi sinh vật thiếu khí, lớp trong cùng là vi sinh vật kị khí. Trong nước thải sinh hoạt, nito chủ yếu tồn tại ở dạng amoniac, hợp chất nito hữu cơ. Vi sinh vật hiếu khí sẽ chuyển hóa hợp chất nito về dạng nitrite, nitrate. Tiếp tục vi sinh vật thiếu khí và kị khí sẽ sử dụng các hợp chất hữu cơ trong nước thải làm chất oxy hóa để khử nitrate, nitrite về dạng khí N2 bay lên. Mặt khác quá trình nito một phần còn được thực hiện tại bể lắng sinh học. Vì vậy hiệu quả xử lý hợp chất nito, photpho trong nước thải sinh hoạt của công trình này rất tốt.
Ngoài ra, để tăng cường khả năng xử lý nito của bể sinh học thiếu khí người ta thêm vao bể giá thể MBBR.Thể tích của vật liệu MBBR so với thể tích bể được điều chỉnh theo tỷ lệ phù hợp, thường là <50% thể tích bể.
Bể sinh học kết hợp giá thể lơ lửng MBBR gồm 2 loại: bể hiếu khí và bể thiếu khí.
Trong bể hiếu khí sự chuyển động của các giá thể được tạo thành do sự khuyếch tán của những bọt khí có kích thước trung bình từ máy thổi khí. Trong khi đó ở bể thiếu khí thì quá trình này được tạo ra bởi sự xáo trộn của các giá thể trong bể bằng cánh khuấy.
B. Ưu điểm nổi bật
• Chịu được tải trọng hữu cơ cao, 2000-10000gBOD/m³ngày, 2000-15000gCOD/m³ngày.
• Hiệu suất xử lý BOD lên đến 90%.
• Loại bỏ được Nito trong nước thải.
• Tiết kiệm được diện tích.
C. Phạm vi áp dụng
• Ứng dụng cho hầu hết các loại nước thải có ô nhiễm hữu cơ: trường học, khu dân cư, bệnh viện, thủy sản, sản xuất chế biến thực phẩm, đồ uống đóng hộp, nước thải công nghiệp, dệt nhuộm …
D. Mô tả hoạt động của giá thể
Nhân tố quan trọng của quá trình xử lý này là các giá thể động có lớp màng biofilm dính bám trên bề mặt. Những giá thể này được thiết kế sao cho diện tích bề mặt hiệu dụng lớn để lớp màng biofim dính bám trên bề mặt của giá thể và tạo điều kiện tối ưu cho hoạt động của vi sinh vật khi những giá thể này lơ lững trong nước.
Tất cả các giá thể có tỷ trọng nhẹ hơn so với tỷ trọng của nước, tuy nhiên mỗi loại giá thể có tỷ trọng khác nhau. Điều kiện quan trọng nhất của quá trình xử lý này là mật độ giá thể trong bể, để giá thể có thể chuyển động lơ lửng ở trong bể thì mật độ giá thể chiếm tứ 25 – 50% thể tích bể và tối đa trong bể MBBR phải nhỏ hơn 67%. Trong mỗi quá trình xử lý bằng màng sinh học thì sự khuyếch tán của chất dinh dưỡng (chất ô nhiễm) ở trong và ngoài lớp màng là nhân tố đóng vai trò quan trọng trong quá trình xử lý, vì vậy chiều dày hiệu quả của lớp màng cũng là một trong những nhân tố quan trọng ảnh hưởng đến hiệu quả xử lý.
Ưu điểm của quá trình xử lý nước thải bằng phương pháp MBBR
• Mật độ vi sinh vật xử lý trên một đơn vị thể tích cao: Mật độ vi sinh vật xử lý trên một đơn vị thể tích cao hơn so với hệ thống xử lý bằng phương pháp bùn hoạt tính lơ lửng, vì vậy tải trọng hữu cơ của bể MBBR cao hơn.
• Chủng loại vi sinh vật xử lý đặc trưng: Lớp màng biofilm phát triển tùy thuộc vào loại chất hữu cơ và tải trọng hữu cơ trong bể xử lý.
• Hiệu quả xử lý cao.
• Tiết kiệm diện tích xây dựng: diện tích xây dựng của MBBR nhỏ hơn so với hệ thống xử lý nước thải hiếu khí đối với nước thải đô thị và công nghiệp.
• Dễ dàng vận hành.
• Điều kiện tải trọng cao: Mật độ vi sinh vật trong lớp màng biofilm rất cao, do đó tải trọng hữu cơ trong bể MBBR rất cao.
• Methane hóa (methanogenesis): Acetic, H2, CO2, acid fomic và methanol chuyển hóa thành methane, CO2 và sinh khối mới.
Quá trình Anoxic ( thiếu khí)
Tại bể Anoxic, trong điều kiện thiếu khí hệ vi sinh vật thiếu khí phát triển xử lý N và P thông qua quá trình Nitrat hóa và Photphoril.
Quá trình khử Nitrat
Khử nitrate, bước thứ hai theo sau quá trình nitrate hóa, là quá trình khử nitrat-nitrogen thành khí nitơ, nito oxitN2Ohay NO được thực hiện trong môi trường thiếu khí (Anoxic) và đòi hỏi một chất cho electron là chất hữu cơ hoặc vô cơ.
Hai con đường khử nitrate có thể xảy ra trong hệ thống sinh học đó là:
• Đồng hóa: Quá trình khử nitrat thành amoniac NH4+ sử dụng cho tổng hợp tế bào. Nó xảy ra khi amoniac không có sẵn, độc lập với sự ức chế của oxy.
• Dị hóa (hay khử nitrate): Khử nitrat bằng con đường dị hóa liên quan đến sự khử nitrat thành nitrit, oxit nito và khí nitơ: NO3- => NO2- =>NO(g)=> N2O (g) => N2(g)
Hầu hết vi khuẩn khử nitrate là dị dưỡng, nghĩa là chúng lấy carbon cho quá trình tổng hợp tế bào từ các hợp chất hữu cơ. Bên cạnh đó, vẫn có một số loài tự dưỡng, chúng nhận carbon cho tổng hợp tế bào từ các hợp chất vô cơ. Ví dụ loài Thiobacillus denitrificans oxy hóa nguyên tố S tạo năng lượng và nhận nguồn carbon tổng hợp tế bào từ CO2 tan trong nước hay HCO3-
Phương trình sinh hóa của quá trình khử nitrate sinh học:
Tùy thuộc vào nước thải chứa carbon và nguồn nitơ sử dụng.
Phương trình năng lượng sử dụng methanol làm chất nhận electron:
6 NO3- + 5 CH3OH => 5 CO2 + 3 N2 + 7 H2O + 6 OH-
Toàn bộ phản ứng gồm cả tổng hợp sinh khối:
§ NO3- + 1,08 CH3OH + 0,24 H2CO3 => 0,056 C5H7O2N + 0,47 N2 + 1,68 H2O + HCO3-
§ O2 + 0,93 CH3OH + 0,056 NO3- => 0,056 C5H7O2N + 0,47 N2 + 1,04 H2O + 0,59 H2CO3 + 0,56 HCO3-
Phương trình năng lượng sử dụng metanol, amoniac-N làm chất nhận electron:
NO3- + 2,5 CH3OH + 0,5 NH4+ + 0,5 H2CO3 => 0,5 C5H7O2N + 0,5 N2 +4,5 H2O + 0,5 HCO3-
Phương trình năng lượng sử dụng metan làm chất nhận electron:
5 CH4 + 8NO3- => 4 N2 + 5 CO2 + 6 H2O + 8 OH-
Toàn bộ phản ứng gồm cả tổng hợp sinh khối sử dụng nước thải làm nguồn cacbon, amoniac-N, làm chất nhận electron:
NO3- + 0,345 C10H19O3N + H+ + 0,267 NH4+ + 0,267 HCO3- => 0,612 C5H7O2N + 0,5 N2 +2,3 H2O + 0,655 CO2
Quá trình Oxic (Hiếu khí)
Quá trình phân hủy hiếu khí dựa vào hoạt động sống của vi sinh vật hiếu khí, chúng sẽ sử dụng oxy hòa tan có trong nước để phân giải chất hữu cơ (chất ô nhiễm cần xử lý). Các vi sinh vật Pseudomonas Denitrificans, Baccillus Licheniforms,… sẽ khử nitrat thành N2 và thải vào không khí. Điều kiện chung cho vi khuẩn nitrat hóa pH = 5,5 – 9 nhưng tốt nhất là 7,5. Khi pH < 7 thì vi khuẩn phát triển chậm, oxy hòa tan cần là 0,5 mg/l, nhiệt độ từ 5 – 40oC.
Quá trình này diễn ra mạnh mẽ nếu dùng biện pháp tác động vào như: sục khí, làm tăng lượng hoạt động của vi sinh vật bằng cách tăng bùn hoạt tính, điều chỉnh hàm lượng chất dinh dưỡng và ức chế các chất độc làm ảnh hưởng đến quá trình hoạt động của vi sinh vật. Ngoài ra, nhiệt độ thích hợp cho quá trình xử lí là 20 – 400C, tối ưu là 25 – 300C.
Quá trình phân hủy chất hữu cơ trong nước thải gồm 3 giai đoạn sau:
– Giai đoạn 1: Oxy hóa chất hữu cơ.
CxHyOz + O2 → CO2 + H2O + ∆H
– Giai đoạn 2: Tổng hợp xây dựng tế bào
CxHyOz + O2 → tế bào VSV + CO2 + H2O + C5H7NO2 – ∆H
– Giai đoạn 3: oxy hóa chất liệu tế bào.
C5H7¬NO2 + 5O2 → 5CO2 + 2H2O + NH2 ± ∆H’
Chi tiết tácgiả đang bổ sung:
Quý khách vui lòng liên hệ với chúng tôi để được tư vấn và hỗ trợ tốt nhất:
Địa chỉ: Công ty CP Matra Quốc Tế
41/1277 Giải Phóng- Hoàng Mai- Hà Nội
Kinhdoanh: Quang Huy 0983.480.866
Email: matraquocte1@gmail.com
Đánh giá máy bơm chìm nước thải tsurumi
Chi tiết xem tại: https://bomnuocthaitsurumi.com/tin-tuc
Tags: Công nghệ AAO, công nghệ MBBR, Công nghệ SBR, công nghệ xử lý nước thải